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1 Indecomposablesinrep A,

Let K be a field. Recall that a quiver Q is a directed graph, i.e. the data of a vertex
set V, an edge set E, and a collection of maps assigning to each edge a a source
and target. Thus we may refer to edges as arrows « : i — j. A quiver representation
is the data of a collection of K-vector spaces {V;};cy and K-linear maps {V, : V; —
Vi}acr along the arrows a : i — j. We denote by rep Q the abelian category of quiver
representations of Q.

We will begin by reviewing some basic vocabulary of representations. Let Y be
arepresentation of Q.

Definition 1.0.1. We say X is a subrepresentation of Y if for all i, X; c ¥;, and the
maps X, : X; — X; are induced by the inclusions X; — Y; aswell as Y, : Y; — Y; for all
a:i—j.

Definition 1.0.2. If X is a subrepresentation of Y, the quotient representation Y/ X is
given by (Y/X); = Y;/X;,and maps (Y/X)q: (Y/X); — (Y/X); induced by X, : X; — X;
andY,:Y; — Y;forallarrows a: i — j.In particular, we obtain a surjection Y — Y/ X.

Definition 1.0.3. For X, Y, Z representations of Q, Y is an extension of Z by X if Y
admits a subrepresentation W= X,and Y/W = Z.

We call the extension Y of Z by X trivial if Y = X @ Z. We also introduce a notion
of a pullback represetation.

Lemma 1.0.4. LetY bean extension of Z by X. For h: Z' — Z a surjection, there exists
a representation Y' an extension of Z' by X with a surjection Y' — Y.

We call Y’ the pullback of Y along h.

Y —» 7'
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Today’s protagonist will be type A quivers. These furnish a special family of quiv-
ers because their underlying unoriented graphs are the type A Dynkin diagrams,
which encode the root system of sl,,. Consequently, these quivers admit a finite
number ofindecomposable representations up to isomorphism, these beingin one-
to-one correspondence with the positive roots of s(,,.

Definition 1.0.5. Let A, denote the quiver with vertices 1,...,n and arrows a; : i —
i+l,1<i<n-1.
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Definition 1.0.6. For1 < i < j < n,let E”/ be the representation given by 1-dimensional
vector spaces at all vertices i < p < j with identity maps between them, and zero
maps and spaces elsewhere.

Example 1.0.7.
A5: ° >o >o >o >o
2 3 4 5
35 id id
E°°: 00— 0 — K— K — K
EB:  0—K-Y g _so0—30

Proposition 1.0.8. The representation E'/ are indecomposable. Any indecompos-
able representation of A, is isomorphic to some E'/.

Proof. Suppose E'/ = XeY.Thenfori < k < j, either Xy or Yy iszero. Fori < k< j—1,if
Xi#0, Yy 2001 Y5 #0, X311 #0, thenalong a: k — k+1the map (E'/), = X,® Y, =0,
violating that (E)), is the identity. It follows that X or Y is the zero representation,
and so E% is indecomposable.

Let V be an indecomposable representation of A,, and denote the maps py :
Vi — Viy1. Let i be minimal such that V; # 0, and pick ¢ € V; nonzero. Let T be the
subrepresentation of V generated by ¢, with j maximal such that p;_jo---op;(2) #0:

pilr; pj-1lT;_y pjlr;
T: > T, SETTp—— 5 5
J/ pi Pj-1 Ji Pj j
V: SV S ... >V > Vieg — -+

Now, we can define splitting maps s; : Vi — Ty inductively (start with s; the pro-
jection V; — T;, thenfori < k < j—1, define sy := (pil1) ! o sg41 0 pi, noting that p;|r,
is an isomorphism by our choices of j). Letting sy =0forall 1< k<iand j <k <n,
one can check that the s; furnish a morphism s: vV — T,and so V=T (V/T). Since
V is assumed to be indecomposable, and T = E'/ # 0, we deduce V = E¥/,

O

Remark 1.0.9. There are (";') indecomposable representations of A,.
Proposition 1.0.10. The dimension of the space of morphisms from E'J to E* is

1 ifk<ist<j,
0 else.

Proof. We will only provide a heuristic here. Let f : E'/ — E¥’ be a morphism of
representations. Note that when the condition k < i < ¢ < j is not satisfied, we find
one of the following two shapes in the commutative diagram for f:




Bl K —3 K K—>30

fl \L \LHOIIZGI'O nOIlZGI'Ol l

B¢ 0 — 3 K K —3 K

In either case, commutativity fails, since factoring through a zero vector space
forces a zero composition. O

Proposition 1.0.11. Nontrivial extensions of E'J by EX¢ exist only when
i+l<k<j+1<t.

When this holds, all nontrivial extensions are isomorphic to EX e EXI. (Ifk = j+1,
E¥ =0.)

Proof. Let Y be a nontrivial extension of E¥/ by E*¥, and ¢ € Y; an element whose
image in (E%/); under the surjection h: Y — E%/ is nonzero. Denote T the subrepre-
sentation generated by #; in particular, Ty #0 for i < k< j. If Tj;; =0, then T = EV,
and thus h splits the inclusion T — Y meaning Y = E'l & E*?_ Since Y is nontrivial, it
must hold, then, that T}, # 0, meaning that the generator of T}, includes into the
subrepresentation of Y isomorophic to E¥, since its image under hin (E%/) ;,; = 0is
necessarily zero. Consequently, k < j +1 < ¢ to ensure (E¥) ., #0.

Now, we eliminate the case i = k. Denote by v the image of ¢ in Y, which must
include into (E¥Y) j+18ince (E')) j+1 =0.Then we can pullback v via the identity maps
to an element x € (EXY); # 0 (since i = k). Replacing T by the subrepresentation 7’
generated by ¢ — x, we deduce T]’. .1 =0 (while T} # 0 for i < k < j since ¢ was chosen

with nontrivial image in (E%/);) and so we again obtain a splitting and the conclusion
that Y is trivial.

Wheni+1<k=<j+1</,pick teY; nonzero. If its image in Y, is zero, then the
subrepresentation T generated by T is isomorphic to E*/, and so again h splits the
inclusion T — Y and Y is trivial. If its image in Y;,, is nonzero, it must include into
(E*) j+1, whichimplies T = E?/. As in the proof of Proposition 1.0.8, we can construct
a splitting s: Y — T and discover that Y = E¥ @ EX/ as desired. O

Example 1.0.12. The indecomposable representations of A, are E'!, E'?, and E?2.
We have E'?/E?? = E'' . The indecomposable representations of A, are E'', E'2, E'3, 22 E?3,
and E3. For instance, E'3 @ F??/F?3 = E12

The indecomposable representations of E/ furnish the building blocks for the
additive subcategories of rep A,. Their interactions as characterized by the previ-
ous propositions will inform the composition and structure of quotient- and extension-
closed additive subcategories.




2 Quotient-closed subcategories of rep A,

We are aiming to classify the torsion classes of rep A,,. They are defined as follows.

Definition 2.0.1. A forsion class T in rep A, is a full additive subcategory closed
under

(1) quotients: YeTandY - Z = Z€T,
(2) extensions: X,Z € 7T and Y and extension of Zby X = Y e 7.

We will begin by classifying a slightly larger collection of subcategories, in which
we will discover the torsion classes.
LetM={(ay,...,a,):0<a; <n+1-i}, and define

Fa=1{0G,j):isj<i+aj}.

Then let C, denote the full subcategory consisting of all direct sums of indecom-
posable representations E'/, (i, j) € F,.

Proposition 2.0.2. The quotient-closed subcategories of rep A, are exactly C,, a€ M.

Proof. Quotient-closed subcategories containing E/ contain E', Fi0+D EiU-D
since surjections E'/ — E/U-® for1<k<j-i.IfXeCyand X - Y ¢ C,, then Y
must contain a summand E%/, (i, j) ¢ F,. Composing with the projection onto this
factor, we obtain X — E%/, implying that X contains asummand E¥, k> j. But X € C,
implies that (i, k) € F,, contradicting that ¥, is “downward closed”. O

Endow M with the partial order inherited from the Cartesian product: a < b iff
a; < b;forall i =1,...,n. Then, one can show that

C,cC, < a<h.
This equips the collection of quotient-closed subcategories with a partial order.

Question 2.0.3. Where are the torsion classes of rep A,? Are there combinatorial
criteria we can impose on a = (ay, ..., a)?

3 Torsion classes ofrep A,

Definition 3.0.1. We call a = (ay, ..., a,) a bracket vector if, forall1 < i< nand j < a;,
we have j+a;,; < a;.




There is a bijection

{Bracket Vectors} - {Bracket strings}

a=(ay,...,an) oflength 2n+2
which can be described as follows: given a string of brackets of length 2n + 2, let a;
be the number of open parentheses strictly between the ith open parenthesis and
its corresponding closed parenthesis, 1 <i < n+1. Then a = (a,...,a,) defines a
bracket vector (we omit a,; since it is always necessarily zero). For instance, when
n =2 one can check that ()(()) — (0,1), and () 0) — (2,0).

Theorem 3.0.2. The torsionclassesofrep A, areexactlyC, fora= (ay,...,a,) abracket
vector. Ordered by inclusion, they form a poset isomorphic to the Tamari lattice Ty,.

Remark 3.0.3.
HCy:aeM} = M|=(n+1)!

[{C,: a € M a bracket vector}| = b (271)
n+l\n
What is the Tamari lattice? It was introduced in 1957 by Dov Tamari in his study
of parenthesizing strings of n letters, where two parenthesizations may be related
by the associativity law:
(xy)2) — (x(y2)).

Today, the Tamari lattice T}, is known to encode many more combinatorial objects,
such as

triangulations of the (n +2)-gon,

in-ordered binary trees,

bracket strings of length 2n + 2,

length-n bracket vectors.
Note that the Tamari lattice is the 1-skeleton of the associahedron.

Lemma 3.0.4. Leta = (a,,...,a,) be a bracket vector. If X € C, and Z € D,, then any
extension of Z by X is trivial.

Proof. Reduce to the case Z = E'"*%~D Let Y be an extension of Z by X, and pick
t € Y; map to a generator of Z;. Denote T the subrepresentation generated by ¢. If
the image of ¢ in Y;,,, is zero, then T = Z and so the projection Y — Z splits the
inclusion T — Y, i.e. Y is the trivial extension.

So let the image of ¢ in Y;. 4 be v #0, i.e. it includes into X;,,, since Z;,,4 = 0.
As in the proof of Proposition 1.0.11, this means we can pullback to an element x
in X; whose image in X;, 4, is v. Replacing T by the subrepresentation 7’ generated
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by ¢ - x, we deduce Tlfm_ =0 (while T,’C # 0 for i < k < i+ a; since t was chosen with
nontrivial image in Z;) and so we again obtain a splitting and the conclusion that
Y is trivial. L

Proof of Theorem 3.0.2. (C, torsion class = a bracket vector): Suppose a is not a
bracketvector. Then3(i, j),1 <i < n, j = a; with j+a; > a;. It suffices to show C, is not
closed under extensions. We have E!(+@~D pitj(+jtai;=D e C, Since j+ a4 j > a;,
we have i+ j+a;.j— 1= (i + a; — 1) + 1 and so by Proposition 1.0.11, E/0*/*ai+j~V g
E™/0+ai~1) is g nontrivial extension, except E'+/+4i+j~V ¢ C, because i+ j+ a4 j—1 %
i+a;—1.S0 C,is not a torsion class.

(a bracket vector — C, torsion class): Let a be a bracket vector. We've estab-
lished that C, is quotient-closed, so it suffices to check closed under extensions. Let
Y be an extension of Z by X. Then choose Z' € D, such that Z’ — Z. Denote Y’ the
pullback along Z’ — Z. By Lemma 3.0.4, Y’ must be trivial, and Y'e C, = Y € C,
by quotient-closed.
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Figure 1: The Tamari Lattice T5.
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