
Torsion classes realize the
Tamari lattice in type A

Bailee Zacovic
University of Michigan

Learning seminar in algebraic combinatorics

February 11, 2026

Contents
1 Indecomposables in rep An 2

2 Quotient-closed subcategories of rep An 5

3 Torsion classes of rep An 5

The reference text for this talk is [Tho12].

1



1 Indecomposables in rep An

Let K be a field. Recall that a quiver Q is a directed graph, i.e. the data of a vertex
set V , an edge set E , and a collection of maps assigning to each edge α a source
and target. Thus we may refer to edges as arrows α : i → j . A quiver representation
is the data of a collection of K -vector spaces {Vi }i∈V and K -linear maps {Vα : Vi →
V j }α∈E along the arrows α : i → j . We denote by repQ the abelian category of quiver
representations ofQ.

We will begin by reviewing some basic vocabulary of representations. Let Y be
a representation ofQ.

Definition 1.0.1. We say X is a subrepresentation of Y if for all i , Xi ⊆ Yi , and the
maps Xα : Xi → X j are induced by the inclusions Xi ,→ Yi as well as Yα : Yi → Y j for all
α : i → j .

Definition1.0.2. If X is a subrepresentationofY , thequotient representation Y /X is
given by (Y /X )i = Yi /Xi , andmaps (Y /X )α : (Y /X )i → (Y /X ) j induced by Xα : Xi → X j

andYα : Yi → Y j for all arrowsα : i → j . Inparticular, weobtain a surjectionY ↠ Y /X .

Definition 1.0.3. For X ,Y , Z representations of Q, Y is an extension of Z by X if Y
admits a subrepresentationW ∼= X , and Y /W ∼= Z .

We call the extension Y of Z by X trivial if Y ∼= X ⊕Z .We also introduce a notion
of a pullback represetation.

Lemma1.0.4. Let Y be an extension of Z by X .Forh : Z ′ ↠ Z a surjection, there exists
a representation Y ′ an extension of Z ′ by X with a surjection Y ′ ↠ Y .

We call Y ′ the pullback of Y along h.

Y ′ Z ′

Y Z

h

Today’s protagonistwill be typeAquivers. These furnish a special family of quiv-
ers because their underlying unoriented graphs are the type A Dynkin diagrams,
which encode the root system of sln . Consequently, these quivers admit a finite
numberof indecomposable representationsup to isomorphism, thesebeing inone-
to-one correspondence with the positive roots of sln .

Definition 1.0.5. Let An denote the quiver with vertices 1, . . . ,n and arrows αi : i →
i +1, 1 ≤ i ≤ n −1.

An : • • · · · •
1 2 n
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Definition1.0.6. For1 ≤ i ≤ j ≤ n, letE i j be the representationgivenby1-dimensional
vector spaces at all vertices i ≤ p ≤ j with identity maps between them, and zero
maps and spaces elsewhere.

Example 1.0.7.
A5 : • • • • •

E 35 : 0 0 K K K

E 23 : 0 K K 0 0

1 2 3 4 5

id id

id

Proposition 1.0.8. The representation E i j are indecomposable. Any indecompos-
able representation of An is isomorphic to some E i j .

Proof. SupposeE i j ∼= X⊕Y .Then for i ≤ k ≤ j ,either Xk orYk is zero. For i ≤ k ≤ j−1, if
Xk ̸= 0, Yk+1 ̸= 0or Yk ̸= 0, Xk+1 ̸= 0, then alongα : k → k+1 themap (E i j )α = Xα⊕Yα = 0,
violating that (E i j )α is the identity. It follows that X or Y is the zero representation,
and so E i j is indecomposable.

Let V be an indecomposable representation of An , and denote the maps pk :
Vk → Vk+1. Let i be minimal such that Vi ̸= 0, and pick t ∈ Vi nonzero. Let T be the
subrepresentation ofV generated by t ,with j maximal such that p j−1◦· · ·◦pi (t ) ̸= 0:

T : · · · Ti · · · T j 0 · · ·

V : · · · Vi · · · V j V j+1 · · ·

pi |Ti
p j−1|T j−1 p j |T j

pi p j−1 p j

Now, we can define splittingmaps sk : Vk → Tk inductively (start with s j the pro-
jection V j → T j , then for i ≤ k ≤ j −1, define sk := (pi |Ti )−1 ◦ sk+1 ◦pk , noting that pi |Ti

is an isomorphism by our choices of j ). Letting sk = 0 for all 1 ≤ k < i and j < k ≤ n,
one can check that the sk furnish amorphism s : V → T, and so V ∼= T ⊕ (V /T ). Since
V is assumed to be indecomposable, and T ∼= E i j ̸= 0, we deduce V ∼= E i j .

Remark 1.0.9. There are
(n+1

2

)
indecomposable representations of An .

Proposition 1.0.10. The dimension of the space of morphisms from E i j to E kℓ is{
1 if k ≤ i ≤ ℓ≤ j ,

0 else.

Proof. We will only provide a heuristic here. Let f : E i j → E kℓ be a morphism of
representations. Note that when the condition k ≤ i ≤ ℓ≤ j is not satisfied, we find
one of the following two shapes in the commutative diagram for f :
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E i j K K K 0

E kℓ 0 K K K

f

∼=

nonzero nonzero
∼=

In either case, commutativity fails, since factoring through a zero vector space
forces a zero composition.

Proposition 1.0.11. Nontrivial extensions of E i j by E kℓ exist only when

i +1 ≤ k ≤ j +1 ≤ ℓ.

When this holds, all nontrivial extensions are isomorphic to E iℓ⊕E k j . (If k = j + 1,
E k j = 0.)

Proof. Let Y be a nontrivial extension of E i j by E kℓ, and t ∈ Yi an element whose
image in (E i j )i under the surjection h : Y ↠ E i j is nonzero. Denote T the subrepre-
sentation generated by t ; in particular, Tk ̸= 0 for i ≤ k ≤ j . If T j+1 = 0, then T ∼= E i j ,
and thus h splits the inclusion T ,→ Y meaning Y ∼= E i j ⊕E kℓ. Since Y is nontrivial, it
must hold, then, that T j+1 ̸= 0, meaning that the generator of T j+1 includes into the
subrepresentation of Y isomorophic to E kℓ, since its image under h in (E i j ) j+1 = 0 is
necessarily zero. Consequently, k ≤ j +1 ≤ ℓ to ensure (E kℓ) j+1 ̸= 0.

Now, we eliminate the case i ≥ k.Denote by v the image of t in Y j+1,whichmust
include into (E kℓ) j+1 since (E i j ) j+1 = 0.Thenwe canpullback v via the identitymaps
to an element x ∈ (E kℓ)i ̸= 0 (since i ≥ k). Replacing T by the subrepresentation T ′

generated by t − x, we deduce T ′
j+1 = 0 (while T ′

k ̸= 0 for i ≤ k ≤ j since t was chosen
withnontrivial image in (E i j )i ) andsoweagainobtainasplittingand theconclusion
that Y is trivial.

When i +1 ≤ k ≤ j +1 ≤ ℓ, pick t ∈ Yi nonzero. If its image in Y j+1 is zero, then the
subrepresentation T generated by T is isomorphic to E i j , and so again h splits the
inclusion T ,→ Y and Y is trivial. If its image in Y j+1 is nonzero, it must include into
(E kℓ) j+1,which impliesT ∼= E iℓ.As in theproofofProposition1.0.8,wecanconstruct
a splitting s : Y → T and discover that Y ∼= E iℓ⊕E k j as desired.

Example 1.0.12. The indecomposable representations of A2 are E 11,E 12, and E 22.
WehaveE 12/E 22 ∼= E 11.The indecomposable representationsof A2 areE 11,E 12,E 13,E 22,E 23,
and E 33. For instance, E 13 ⊕E 22/E 23 ∼= E 12

The indecomposable representations of E i j furnish the building blocks for the
additive subcategories of rep An . Their interactions as characterized by the previ-
ouspropositionswill informthecompositionandstructureofquotient- andextension-
closed additive subcategories.
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2 Quotient-closed subcategories of rep An

We are aiming to classify the torsion classes of rep An . They are defined as follows.

Definition 2.0.1. A torsion class T in rep An is a full additive subcategory closed
under

(1) quotients: Y ∈T and Y ↠ Z =⇒ Z ∈T,

(2) extensions: X , Z ∈T and Y and extension of Z by X =⇒ Y ∈T.

Wewill beginby classifying a slightly larger collectionof subcategories, inwhich
we will discover the torsion classes.

LetM= {(a1, . . . , an) : 0 ≤ ai ≤ n +1− i }, and define

Fa = {(i , j ) : i ≤ j ≤ i +ai }.

Then let Ca denote the full subcategory consisting of all direct sums of indecom-
posable representations E i j , (i , j ) ∈Fa .

Proposition 2.0.2. The quotient-closed subcategories of rep An are exactlyCa , a ∈M.

Proof. Quotient-closed subcategories containing E i j contain E i i ,E i (i+1), . . . ,E i ( j−1)

since surjections E i j ↠ E i ( j−k) for 1 ≤ k ≤ j − i . If X ∈ Ca , and X ↠ Y ∉ Ca , then Y
must contain a summand E i j , (i , j ) ∉ Fa . Composing with the projection onto this
factor,weobtain X ↠ E i j , implying that X contains a summandE i k , k ≥ j .But X ∈Ca

implies that (i ,k) ∈Fa , contradicting that Fa is “downward closed”.

EndowM with the partial order inherited from the Cartesian product: a ≤ b iff
ai ≤ bi for all i = 1, . . . ,n. Then, one can show that

Ca ⊂Cb ⇐⇒ a ≤ b.

This equips the collection of quotient-closed subcategories with a partial order.

Question 2.0.3. Where are the torsion classes of rep An? Are there combinatorial
criteria we can impose on a = (a1, . . . , an)?

3 Torsion classes of rep An

Definition 3.0.1. We call a = (a1, . . . , an) a bracket vector if, for all 1 ≤ i ≤ n and j ≤ ai ,
we have j +ai+ j ≤ ai .
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There is a bijection{
Bracket vectors

a=(a1,...,an)

}
∼←→

{
Bracket strings
of length 2n+2

}
which can be described as follows: given a string of brackets of length 2n +2, let ai

be the number of open parentheses strictly between the i th open parenthesis and
its corresponding closed parenthesis, 1 ≤ i ≤ n + 1. Then a = (a1, . . . , an) defines a
bracket vector (we omit an+1 since it is always necessarily zero). For instance, when
n = 2 one can check that ()(()) 7→ (0,1), and (()()) 7→ (2,0).

Theorem3.0.2. The torsionclassesof rep An are exactlyCa for a = (a1, . . . , an)abracket
vector. Ordered by inclusion, they form a poset isomorphic to the Tamari lattice Tn .

Remark 3.0.3.
|{Ca : a ∈M}| = |M| = (n +1)!

|{Ca : a ∈M a bracket vector}| = 1

n +1

(
2n

n

)
.

What is the Tamari lattice? It was introduced in 1957 by Dov Tamari in his study
of parenthesizing strings of n letters, where two parenthesizations may be related
by the associativity law:

((x y)z) −→ (x(y z)).

Today, the Tamari lattice Tn is known to encodemanymore combinatorial objects,
such as

• triangulations of the (n +2)-gon,

• in-ordered binary trees,

• bracket strings of length 2n +2,

• length-n bracket vectors.

Note that the Tamari lattice is the 1-skeleton of the associahedron.

Lemma 3.0.4. Let a = (a1, . . . , an) be a bracket vector. If X ∈ Ca and Z ∈ Da , then any
extension of Z by X is trivial.

Proof. Reduce to the case Z ∼= E i (i+ai−1). Let Y be an extension of Z by X , and pick
t ∈ Yi map to a generator of Zi . Denote T the subrepresentation generated by t . If
the image of t in Yi+ai is zero, then T ∼= Z and so the projection Y ↠ Z splits the
inclusion T ,→ Y , i.e. Y is the trivial extension.

So let the image of t in Yi+ai be v ̸= 0, i.e. it includes into Xi+ai since Zi+ai = 0.
As in the proof of Proposition 1.0.11, this means we can pullback to an element x
in Xi whose image in Xi+ai is v. Replacing T by the subrepresentation T ′ generated
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by t − x, we deduce T ′
i+ai

= 0 (while T ′
k ̸= 0 for i ≤ k ≤ i + ai since t was chosen with

nontrivial image in Zk) and so we again obtain a splitting and the conclusion that
Y is trivial.

Proof of Theorem 3.0.2. (Ca torsion class =⇒ a bracket vector): Suppose a is not a
bracket vector. Then∃(i , j ), 1 ≤ i ≤ n, j ≥ ai with j+ai > ai . It suffices to showCa isnot
closed under extensions. We have E i (i+ai−1),E i+ j (i+ j+ai+ j−1) ∈ Ca . Since j + ai+ j > ai ,
we have i + j + ai+ j −1 ≥ (i + ai −1)+1 and so by Proposition 1.0.11, E i (i+ j+ai+ j−1) ⊕
E i+ j (i+ai−1) is a nontrivial extension, exceptE i (i+ j+ai+ j−1) ∉Ca because i+ j+ai+ j −1≰
i +ai −1. SoCa is not a torsion class.

(a bracket vector =⇒ Ca torsion class): Let a be a bracket vector. We’ve estab-
lished thatCa is quotient-closed, so it suffices to check closedunder extensions. Let
Y be an extension of Z by X . Then choose Z ′ ∈ Da such that Z ′ ↠ Z . Denote Y ′ the
pullback along Z ′ ↠ Z . By Lemma 3.0.4, Y ′ must be trivial, and Y ′ ∈ Ca =⇒ Y ∈ Ca

by quotient-closed.
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(()())
(a((bc)d))

(())()
((a(bc))d)

()()()
(((ab)c)d)

()(())
((ab)(cd))

((()))
(a(b(cd)))

Figure 1: The Tamari Lattice T3.
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